Integer Ambiguity Resolution with Nonlinear Geometrical Constraints
نویسندگان
چکیده
Integer ambiguity resolution is the key to obtain very accurate positioning solutions out of the GNSS observations. The Integer Least Squares (ILS) principle, a derivation of the least-squares principle applied to a linear system of equations in which some of the unknowns are subject to an integer constraint, was demonstrated to be optimal among the class of admissible integer estimators. In this contribution it is shown how to embed into the functional model a set of nonlinear geometrical constraints, which arise when considering a set of antennae mounted on a rigid platform. A method to solve for the new model is presented and tested: it is shown that the strengthened underlying model leads to an improved capacity of fixing the correct integer ambiguities.
منابع مشابه
Extended GNSS ambiguity resolution models with regularization cri- terion and constraints
This paper firstly presents an extended ambiguity resolution model that deals with an ill-posed problem and constraints between the estimated parameters. In the extended model, the regularization criterion is used instead of the traditional least squares in order to estimate the float ambiguities better. The existing models can be derived from the general model. Secondly, the paper examines the...
متن کاملEvaluation of the Regularization Algorithm to Decorrelation of Covariance Matrix of Float Ambiguity in Fast Resolution of GPS Ambiguity Parameters
Precise positioning in Real Time Kinematic (RTK) applications depends on the accurate resolution of the phase ambiguities. In RTK positioning, ambiguity parameters are highly correlated, especially when the positioning rate is high. Consequently, application of de-correlation techniques for the accurate resolution of ambiguities is inevitable. Phase ambiguity as positioning observations by the ...
متن کاملImproving the GNSS Attitude Ambiguity Success Rate with the Multivariate Constrained LAMBDA Method
GNSS Attitude Determination is a valuable technique for the estimation of platform orientation. To achieve high accuracies on the angular estimations, the GNSS carrier phase data has to be used. These data are known to be affected by integer ambiguities, which must be correctly resolved in order to exploit the higher precision of the phase observables with respect to the GNSS code data. For a s...
متن کاملTesting of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments
Global navigation satellite system (GNSS) ambiguity resolution is the process of resolving the unknown cycle ambiguities of the carrier phase data as integers. The sole purpose of ambiguity resolution is to use the integer ambiguity constraints as a means of improving significantly on the precision of the remaining GNSS model parameters. In this contribution, we consider the problem of ambiguit...
متن کاملRESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM
This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012